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INTRODUCTION
The global prevalence of diabetes presents a daunting challenge 
to public health, marking it as a significant global health crisis. With 
India accounting for over 77 million diagnosed cases, the nation has 
emerged as the epicenter of the diabetes epidemic worldwide [1]. 
The alarming rise in diabetes cases underscores the urgent need for 
comprehensive research and intervention strategies. India, in particular, 
is grappling with a staggering increase in diabetes cases. Over the 
past few decades, the country has witnessed a steady rise in diabetes 
prevalence, with current estimates indicating that more than 77 million 
individuals are living with diabetes [2]. Alarmingly, approximately 57% 
of adults with diabetes in India remain undiagnosed, highlighting 
significant gaps in healthcare access and screening efforts.

Diabetes, as part of Metabolic Syndrome (MetS), presents a 
multifaceted challenge in management and treatment. BMI fails 
to fully capture metabolic nuances; individuals with a normal BMI 
may still have metabolic abnormalities, while those with higher 
BMIs may exhibit better metabolic health than expected [3]. This 
limitation underscores the need for comprehensive measures that 
consider factors such as waist circumference, body composition 
and metabolic biomarkers to ensure accurate assessment and 

appropriate management strategies for metabolic disorders like 
diabetes [4].

IR stands as a critical precursor to Type 2 Diabetes (T2D), a condition 
with increasing prevalence worldwide, particularly pronounced in 
populations like India, where genetic predispositions and lifestyle 
factors converge to amplify the risk. This concept underscores the 
intricate interplay between genetic and environmental factors in 
metabolic dysregulation, highlighting the need for comprehensive 
research to elucidate the underlying mechanisms. IR, a key factor in 
metabolic disorders such as Type 2 Diabetes Mellitus (T2DM), is closely 
associated with altered body composition parameters, including 
increased visceral adiposity and reduced muscle mass, even among 
individuals with a normal BMI [5].

These alterations instigate systemic inflammation and disrupt the 
balance of adipokines, cytokines and metabolic signalling molecules, 
exacerbating IR. Changes in body composition, accompanied by 
alterations in metabolic markers such as Glycated Haemoglobin 
(HbA1c), Fasting Plasma Glucose (FPG), Triglycerides (TG), Low-
Density Lipoprotein Cholesterol (LDL-C), High-Density Lipoprotein 
Cholesterol (HDL-C) and Total Cholesterol (TC), indicate IR and its 
associated metabolic disorders, raising the risk of cardiovascular 
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ABSTRACT
Introduction: India, characterised as the “diabetes capital” of 
the world, faces a rapidly increasing diabetes crisis, with over 
65 million cases diagnosed. Despite the growing prevalence, the 
genetic underpinnings of Insulin Resistance (IR) among Indians 
with a normal Body Mass Index (BMI) remains understudied.

Aim: To fill the knowledge gap by investigating the association of 
specific gene variants (RNF138, ABCA1, and Oestrogen-Related 
Receptor γ (ESRRG)-GPATCH2) with IR risk in this demographic.

Materials and Methods: This study was a case-control study 
conducted in Bengaluru, Karnataka, India on a total of 191 
participants (90 men and 101 women). The study, including 
data collection and analysis, was completed over a period 
of six months. Participants were categorised into cases 
(Homeostasis Model Assessment Insulin Resistance (HOMA2-
IR) >2) and controls (HOMA2-IR <2) based on HOMA2-IR values. 
Genotyping for rs4799327 (RNF138), rs2275543 (ABCA1), and 
rs1497828 (ESRRG-GPATCH2) was performed using the Illumina 
Infinium Global Screening Array (GSA). Statistical analyses, 

including Odds Ratios (ORs), 95% Confidence Intervals (CIs), 
and inheritance model analysis, were conducted to assess the 
association between genotypes and IR.

Results: Significant associations were found between IR and 
genetic variants rs4799327 (OR=2.74, 95% CI: 1.28-5.88, 
p-value=0.006) in RNF138, rs1497828 (OR=2.90, 95% CI: 
1.51-5.57, p-value=0.0011) in ESRRG-GPATCH2 (dominant 
inheritance model), and rs2275543 (OR=3.50, 95% CI: 1.17-
10.42, p-value=0.011) in ABCA1 (additive model). The study 
highlights a notable susceptibility to IR linked to these genetic 
markers among individuals with a normal BMI in the Indian 
population.

Conclusion: This study underscores the importance of genetic 
factors in the risk of developing IR among Indians with a normal 
BMI, suggesting a complex interplay of genetics beyond 
traditional risk factors. These findings necessitate further 
research into the functional significance of these associations 
and their potential implications for targeted interventions and 
preventive strategies in high-risk populations.
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while those with HOMA2-IR < 2 were regarded as controls (134 
participants). HOMA2-IR values were determined using the online 
tool provided by the Medical Science Division of The University of 
Oxford (www.OCDEM.ox.ac.uk). Demographic information, including 
self-reported height (in centimeters) and weight (in kilograms), was 
collected through an electronic registration questionnaire. BMI was 
computed as weight (in kilograms) divided by height (in meters) 
squared. Additionally, measurements such as Body Fat Percentage 
(BFP) and fat mass were obtained. 

inclusion criteria: Study participants were adults aged 18 years 
with a normal BMI (18.5-24.9 kg/m2). Participants were classified 
as cases (HOMA-IR >2) or controls (HOMA-IR <2) based on insulin 
resistance. All participants provided informed consent for genetic 
testing and data collection.

exclusion criteria: Individuals with a history of cancer, cardiovascular or 
renal failure, mental illness, pregnancy, or lactation were excluded from 
the study to ensure participant safety and adhere to ethical guidelines.

Study Procedure
Following a 12-hour fast, venous blood samples were drawn from 
participants to assess various metabolic markers. A total of three 
vials of venous whole blood were withdrawn from each participant 
in a single blood draw session. For participants where blood 
drawing was not feasible, a possible saliva sample was collected 
for genotyping purposes.

The blood collection and testing were conducted using the following 
tubes and quantities:

•	 HbA1c:	A	5	mL	blood	sample	was	collected	in	an	EDTA	vial	for	
the analysis of HbA1c.

•	 Glucose	Fasting:	A	5	mL	blood	sample	was	collected	in	a	fluoride	
vial to ensure accurate fasting glucose measurements.

•	 Total	 Cholesterol	 (TC),	 Serum	 LDL	 Cholesterol,	 TG,	 Serum	
HDL Cholesterol and Insulin Fasting: A 5 mL blood sample 
was collected in a Serum Separator Tube (SST) vial for these 
serum-based tests.

The assessments were conducted using the Beckman DxC 700 AU 
for all markers except HbA1c, which was analysed with the Tosoh 
G-8 and fasting insulin levels were measured by the Beckman UniCel 
DxI 800, adhering to the protocols provided by the manufacturers. 
The reference ranges were as follows: FPG (70-100 mg/dL), TC 
(0-100 mg/dL), TG (0-150 mg/dL), HDL-C (40-60 mg/dL) and 
LDL-C (0-100 mg/dL) [14-16]. The HOMA2-IR formula, calculated 
as fasting insulin (mU/L) multiplied by FPG (mmol/L), was used to 
test for IR [17]. Using a HOMA2-IR cut-off of 2, participants were 
then classified as either insulin sensitive or resistant.

Genotyping and Single-Nucleotide Polymorphism (SNP) 
Selection: This study aimed to investigate the genetic factors 
influencing IR by analysing participants’ DNA. DNA extraction 
was conducted using the Qiagen blood extraction kit, known for 
its efficiency in isolating high-quality genomic DNA from blood 
specimens. For genotyping, the Illumina Infinium GSA V3 platform was 
employed, offering extensive coverage of genetic variants across the 
genome. The genotyping process utilised the Illumina iScan system, 
ensuring high-throughput and precise scanning of SNP arrays. Data 
interpretation, quality control and export were facilitated by Genome 
Studio V2 software [18] ensuring the accurate calling of genotypes 
and preparation for further statistical analysis [19].

In this study, three genes were focused-RNF138, ABCA1 and 
ESRRG-selected based on a thorough review of existing scientific 
literature that identified their potential involvement in metabolic 
pathways and their impact on IR. The SNPs within these genes 
were chosen for their strong associations with metabolic traits such 
as insulin sensitivity and glucose homeostasis. This careful selection 
process aimed to identify genetic variants with significant associations 
with IR in the Indian population, providing valuable insights into the 

diseases. Through the exploration of genes such as Ring Finger Protein 
138 (RNF138), ATP Binding Cassette Subfamily A Member 1 (ABCA1) 
and Oestrogen Related Receptor Gamma-G-Patch Domain Containing 
(ESRRG-GPATCH2), which are crucial in metabolic regulation, this 
study aims to investigate the genetic pathways underlying IR and its 
metabolic implications in the Indian population, providing insights into 
disease susceptibility and potential therapeutic targets [6-8].

RNF138, ABCA1 and ESRRG-GPATCH2 have been chosen for 
investigation in present research due to their recognised involvement 
in metabolic pathways associated with insulin sensitivity and glucose 
homeostasis [9]. RNF138, a type of E3 ubiquitin ligase, is believed 
to play a role in several cellular functions, including insulin signalling 
and glucose metabolism, suggesting its potential involvement in the 
development of IR [10]. Similarly, ABCA1, a key regulator of cellular 
cholesterol efflux, plays a crucial role in lipid metabolism and has 
been implicated in insulin sensitivity and glucose uptake, making 
it a promising gene for exploring the risk of IR [11]. Furthermore, 
ESRRG, a member of the nuclear receptor superfamily, serves as 
a transcriptional regulator of genes involved in energy metabolism 
and mitochondrial function, indicating its potential role in modulating 
insulin sensitivity and glucose utilisation [12].

By focusing on these genes, the study seeks to elucidate the intricate 
genetic pathways contributing to IR risk among individuals with 
normal BMI, thereby enhancing our understanding of the genetic 
architecture of metabolic dysregulation in the Indian population. 
Leveraging advanced genetic analyses and statistical methodologies, 
the study aims to identify specific Single-Nucleotide Polymorphisms 
(SNPs) within RNF138, ABCA1 and ESRRG-GPATCH2 that are 
significantly associated with IR, shedding light on their functional 
significance and potential implications for diabetes risk.

The current study aims to bridge the gap in our understanding of 
the genetic factors contributing to IR risk among individuals with 
a normal BMI in the Indian population. By elucidating the genetic 
underpinnings of IR and its implications for diabetes risk, the study 
endeavours to inform public health strategies aimed at preventing 
and managing diabetes in high-risk populations, thereby addressing 
a critical aspect of the global diabetes epidemic.

The current case-control study aims to achieve the following 
objectives:

1. investigate genetic factors: To identify and analyse specific 
SNPs within the RNF138, ABCA1 and ESRRG-GPATCH2 genes 
that are significantly associated with IR among individuals with 
a normal BMI in the Indian population.

2. assess metabolic markers: To examine the relationship 
between identified genetic variants and key metabolic markers 
such as HbA1c, FPG, TG, LDL-C, HDL-C and TC.

3. Public health implications: To provide insights that can inform 
public health strategies aimed at preventing and managing 
diabetes and related metabolic disorders, particularly in high-
risk populations with a genetic predisposition to IR.

By achieving these objectives, this study seeks to enhance our 
understanding of the genetic architecture of IR and its metabolic 
implications, contributing valuable knowledge for developing targeted 
interventions and improving health outcomes in the Indian population.

MATERIALS AND METHODS
The case-control study involved 191 Indian participants (90 men and 
101 women), aged between 18 to 65 years, recruited from January 2022 
to December 2023. The study was conducted in Bengaluru, Karnataka, 
India. This study was approved under AERC (Answergenomics Ethics 
Review Committee) Number: 10001/AERC/24, in accordance with 
the National Ethical Guidelines for Biomedical and Health Research 
Involving Human Participants, ICMR (2017). The participants were 
divided into cases and controls based on their HOMA2-IR values [13]. 
Those with HOMA2-IR > 2 were considered cases (57 participants), 
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Genotype data analysis: The study employed PLINK software for 
quality control of genotype data, which involved filtering out samples 
with low genotyping rates, excluding SNPs with considerable missing 
data and removing rare variants due to their limited statistical power 
[20]. Heterozygosity checks were performed to verify the accuracy of 
genotype distribution. Following quality control, SNPstats software 
was utilised to investigate the association between specific SNPs 
and IR [21]. The analysis produced Odds Ratios (ORs) along with 
their corresponding 95% Confidence Intervals (CIs). In the control 
group, adherence to Hardy-Weinberg equilibrium was maintained at 
a significance level of 0.05 [21]. Calculating OR and the associated 
95% CIs was the method used to estimate risk. The Linkage 
Disequilibrium (LD) between the SNPs was also investigated in the 
study, using the LD coefficient D, which was determined using the 
SNPstats software Additionally, power analyses were performed 
based on power and sample size calculations [22]. Each SNP 
underwent Bonferroni adjustment to mitigate the risk of type I errors 
resulting from multiple tests.

STATISTICAL ANALYSIS
The statistical evaluation began by calculating the differences in age, 
glucose levels and lipid metrics, including TC, LDL-C, HDL-C, TGs 
and HbA1c, between the two groups. Due to the non parametric 
nature of the data, the analysis employed the Mann-Whitney U test, 
utilising the SciPy library. Additionally, the distribution of gender 
across the groups was assessed using the Chi-square test, with 
comprehensive results outlined in the table below.

RESULTS
In this study, a total of 191 participants were included and all 
underwent genotyping. The clinical characteristics, as well as the 
glucose and lipid metabolic parameters of the subjects, are detailed 
in [Table/Fig-2]. The analysis conducted on the data did not reveal any 
significant statistical differences in terms of age or gender between 
the case and control groups, nor among males and females within 
those groups (p-value>0.05). However, notable variations were 
observed in BMI (p-value=0.01), fat mass (p-value=0.007), HbA1c 
(p-value=0.01), fasting glucose (p-value=0.001) and serum TGs 
(p-value=0.02) when comparing cases to controls. It is important to 
note that the p-values for BFP, TC and serum HDL-C are all above 
the significant levels, as indicated in [Table/Fig-2].

Gene Chromosome rSid major/minor alleles

RNF138 18:29674992 rs4799327 G/A

ABCA1 9:107651174 rs2275543 T/C

ESRRG- GPATCH2 1:217527024 rs1497828 C/G

[Table/Fig-1]: Description of the three single-nucleotide polymorphisms.
RNF138- ring finger protein 138, ABCA1- ATP Binding Cassette Subfamily A Member 1-, 
ESRRG- GPATCH2- oestrogen related receptor gamma-G-Patch Domain Containing 2

Parameters
Cases  median 

(Q1-Q3)
Controls 

 median (Q1-Q3) u statistic p-value

BMIa
23.05  

(21.89-24.09)
22.235  

(20.84-23.61)
4656.5 0.01

BFPa 26.11  
(19.47-29.01)

23.02  
(17.9-27.52)

4409.5 0.09

Fat Massa 15.85  
(13.59-17.79)

13.62  
(11.78-16.04)

4761.5 0.007

HbA1ca 5.4 (5.3-5.5) 5.3 (5.1-5.5) 4695.5 0.01

Insulin fastinga 11.02  
(9.67-13.88)

5.31 (3.9-6.92) 7143 1.96E-21

Glucose 
fastinga

92.6  
(86.9-96.2)

87.05  
(82.42-92.27)

4937.5 0.001

Total 
cholesterola

186.0  
(166.0-227.0)

185.0  
(161.25-211.0)

4146 0.35

Gene rSid
risk 
allele

Best fit 
model Statistical significance

RNF138 rs4799327 A Dominant
(OR)=2.74; 95%(CI): 1.28-5.88; 

p-value=0.006

ABCA1 rs2275543 C Log additive
(OR)=3.50; 95%(CI): 1.17-

10.42; p-value=0.011

ESRRG- 
GPATCH2

rs1497828 C Dominant
(OR)=2.90; 95%(CI):1.51-5.57; 

p-value=0.0011

[Table/Fig-3]: The risk alleles for the polymorphisms along with the best fit model 
and statistical significance.

Chi-square tests were performed to evaluate the association between 
genotypes and allele frequencies of each SNP with the phenotype 
(IR). All the SNPs showed significant differences between the cases 
and controls after the Bonferroni correction, with respective p-values 
of 0.0063, 0.011 and 0.0013 for the genotypic frequencies (p-value 
<0.016). Thus, the association between these three polymorphisms 
and IR is quite significant. The allelic frequency difference between 
the cases and controls for all the SNPs considered also stands 
significant (p-value <0.05) [Table/Fig-4].

Chi-squared analyses were performed to investigate the relationship 
between the genotypic and allelic variations of the three SNPs 
(rs4799327, rs2275543 and rs1497828) within two groups 
distinguished by their HOMA2-IR levels (>2 and <2). The obtained 
p-values indicate significant associations between SNP genotypes 
and IR status. The rs4799327 variant in the RNF138 gene showed a 
significant association with IR under a dominant inheritance model, 
with a risk allele of A. The Odds Ratio (OR) for this variant was 2.74 
(95% CI: 1.28-5.88, p-value=0.006), indicating that individuals 
with the A allele had a 2.74-fold increased risk of developing IR 
compared to those without the allele. For the rs2275543 variant 
in the ABCA1 gene, the analysis revealed a significant association 
with IR using a log-additive model. The risk allele C was linked to an 
OR of 3.50 (95% CI: 1.17-10.42, p-value=0.011), suggesting that 
individuals carrying the C allele were at a significantly higher risk 
of developing IR. The rs1497828 variant in the ESRRG-GPATCH2 
gene demonstrated a significant association with IR under the 
dominant inheritance model, with a risk allele of C. The OR for this 
variant was 2.90 (95% CI: 1.51-5.57, p-value=0.0011), indicating a 
strong relationship between the C allele and increased susceptibility 
to IR [Table/Fig-3].

model of inheritance analysis: In this study, genetic inheritance 
models (codominant, dominant, recessive, overdominant and log-
additive models) for SNPs rs4799327, rs2275543 and rs1497828 
were investigated. [Tables/Fig-5-7] provide detailed data on these 
models, including the evaluation of the lowest Akaike Information 

Serum LDL 
cholestrola

46.5  
(42.9-52.5)

49.5  
(44.03-54.68)

3383.0 2.128e-01

Serum 
triglyceridesa

102.0  
(85.0-127.0)

88.0  
(70.0-126.0)

4631 0.02

Serum HDL 
cholesterola

46.5  
(42.9-52.5)

49.5  
(44.025-54.67)

3383 0.21

[Table/Fig-2]: Clinical characteristics and glucose and lipid metabolic parameters 
of the subjects enrolled in the present study.
ªMann-Whitney test
bχ2 test. Data are presented as the median (Q1-Q3) for age, BMI, Fat Mass, Hba1c, total 
cholesterol, triglycerides, HDL, LDL, Glucose fasting, Insulin Fasting. Data are presented as n 
for gender. p<0.05 was considered to indicate a statistically significant difference. BFP: Body fat 
percentage; BMI: Body mass index; LDL: Low-density lipoprotein; HDL: High-density lipoprotein
BMI (kg/m²): 18.5-24.9 kg/m²; Body fat percentage (BFP): Men: 6-24%, Women: 14-31%;
HbA1c (%): < 5.7% (Normal); Insulin fasting (µU/mL): 2.6-24.9 µU/mL; Glucose fasting (mg/dL): 
70-100 mg/dL; Total cholesterol (mg/dL): < 200 mg/dL; Serum LDL cholesterol (mg/dL): < 100 
mg/dL; Serum triglycerides (mg/dL): < 150 mg/dL; Serum HDL cholesterol (mg/dL): Men: > 40 
mg/dL, Women: > 50 mg/dL

genetic architecture of metabolic disorders [Table/Fig-1] shows the 
description of the three single-nucleotide polymorphisms.

The allelic and genotypic distribution of the three SNPs is provided 
in [Table/Fig-3]. All the controls and cases for the SNPs rs4799327, 
rs2275543 and rs1497828 were in compliance with the Hardy-
Weinberg equilibrium (p-value >0.05). This was evaluated through 
a Fisher’s exact test.
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SNP Group a1 a2 χ² χ² p-value a1a1 a1a2 a2a2 p-value hWe p-value

rs4799327

Cases
G

102 (0.89)
A

12 (0.11)
5.182 0.02282

A/A
1 (0.02)

G/A
10 (0.18)

G/G
46 (0.81)

0.0063

0.48

Controls
G

214 (0.8)
A

54 (0.2)
A/A

4 (0.03)
G/A

46 (0.34)
G/G

84 (0.63)
0.59

rs2275543

Cases
T

110 (0.96)
C

4 (0.04)
5.017 0.02509 

C/C
0 (0)

T/C
4 (0.07)

T/T
53 (0.93)

0.011

1

Controls
T

240 (0.9)
C

28 (0.1)
C/C

1 (0.01)
T/C

26 (0.19)
T/T

107 (0.8)
1

rs1497828

Cases
C

27 (0.24)
G

87 (0.76)
9.264 0.002338 

C/C
4 (0.07)

G/C
19 (0.33)

G/G
34 (0.6)

0.0013

0.053

Controls
C

107 (0.4)
G

161 (0.6)
C/C

18 (0.13)
G/C

71 (0.53)
G/G

45 (0.34)
0.73

[Table/Fig-4]: Comparison of genotypic and allelic distribution of three SNPs (rs4799327, rs2275543 and rs1497828) between the two groups HOMA2 IR >2 and HOMA2 IR <2.
Note: In the Chi-square association analysis of cases and controls, the four SNPs (rs920590, rs7274134, rs6762208 and rs2078267) exhibited statistically significant associations with the trait after Bon-
ferroni correction, with their respective p-values falling below the adjusted threshold of 0.016.

model Genotype status= Ca status= Co or (95% Ci) p-value aiC BiC

Codominant

G/G 46 (80.7%) 84 (62.7%) 1.00

0.024 238.8 268.1G/A 10 (17.5%) 46 (34.3%) 2.80 (1.27-6.17)

A/A 1 (1.8%) 4 (3%) 2.21 (0.24-20.66)

Dominant
G/G 46 (80.7%) 84 (62.7%) 1.00

0.0063 236.8 262.9
G/A-A/A 11 (19.3%) 50 (37.3% ) 2.74 (1.28-5.88)

Recessive
G/G-G/A 56 (98.2%) 130 (97%) 1.00

0.64 244.1 270.1
A/A 1 (1.8%) 4 (3%) 1.66 (0.18-15.30)

Overdominant
G/G-A/A 47 (82.5%) 88 (65.7%) 1.00

0.0084 237.3 263.4
G/A 10 (17.5%) 46 (34.3%) 2.72 (1.24-5.98)

Log-additive --- --- --- 2.39 (1.18-4.84) 0.0095 237.6 263.6

[Table/Fig-5]: Inheritance models analysis of the SNP rs4799327 (RNF198) between the cases and controls.
rs4799327 association with response status (n=191, adjusted by gender+age.cat
Note: Significant threshold after Bonferroni correction for multiple comparisons is less than 0.0125; AIC: Akaike information criterion; BIC: Bayesian information criterion; CI: Confidence interval; Ca: cases; 
Co: controls

model Genotype status=Ca status=Co or (95% Ci) p-value aiC BiC

Codominant

T/T 53 (93%) 107 (79.8%) 1.00

0.036 239.7 268.9T/C 4 (7%) 26 (19.4%) 3.39 (1.12-10.30)

C/C 0 (0%) 1 (0.8%) NA (0.00-NA)

Dominant
T/T 53 (93%) 107 (79.8%) 1.00

0.012 238 264
T/C-C/C 4 (7%) 27 (20.1%) 3.54 (1.17-10.75)

Recessive
T/T-T/C 57 (100%) 133 (99.2%) 1.00

0.36 243.4 269.5
C/C 0 (0%) 1 (0.8%) NA (0.00-NA)

Overdominant
T/T-C/C 53 (93%) 108 (80.6%) 1.00

0.018 238.6 264.7
T/C 4 (7%) 26 (19.4%) 3.35 (1.10-10.16)

Log-additive --- --- --- 3.50 (1.17-10.42) 0.011 237.8 263.8

[Table/Fig-6]: Inheritance models analysis of the SNP rs2275543 (ABCA1) between the cases and controls
rs2275543 association with response status (n=191, adjusted by gender+age.cat).
Note: Significant threshold after Bonferroni correction for multiple comparisons is less than 0.0125; AIC: Akaike information criterion; BIC: Bayesian information criterion; CI: Confidence interval; Ca: cases; 
Co: Controls

model Genotype status=Ca status=Co or (95% Ci) p-value aiC BiC

Codominant

G/G 34 (59.6%) 45 (33.6%) 1.00

0.0049 235.6 264.9G/C 19 (33.3%) 71 (53%) 2.85 (1.43-5.66)

C/C 4 (7%) 18 (13.4%) 3.15 (0.96-10.41)

Dominant
G/G 34 (59.6%) 45 (33.6%) 1.00

0.0011 233.7 259.7
G/C-C/C 23 (40.4%) 89 (66.4%) 2.90 (1.51-5.57)

Recessive
G/G-G/C 53 (93%) 116 (86.6%) 1.00

0.25 243 269
C/C 4 (7%) 18 (13.4%) 1.91 (0.60-6.04)

Overdominant
G/G-C/C 38 (66.7%) 63 (47%) 1.00

0.01 237.7 263.7
G/C 19 (33.3%) 71 (53%) 2.33 (1.20-4.50)

Log-additive --- --- --- 2.21 (1.30-3.76) 0.0023 235 261

[Table/Fig-7]: Inheritance models analysis of the SNP rs1497828 (ESRRG- GPATCH2) between the cases and controls.
rs1497828 association with response status (n=191, adjusted by gender+age.cat)
Note: Significant threshold after Bonferroni correction for multiple comparisons is less than 0.0125; AIC: Akaike information criterion; BIC: Bayesian information criterion; CI: Confidence interval; Ca: cases; 
Co: Controls
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Criterion (AIC) and Bayesian Information Criterion (BIC) values to 
determine the best-fit model for each SNP [23].

For SNP rs4799327, located in the RNF138 gene and rs1497828, 
located in the intergenic region of ESRRG-GPATCH2, the top model 
identified was dominant, with respective p-values of 0.0063 and 
0.0011, accompanied by the lowest AIC and BIC values.

Specifically, for SNP rs4799327, the risk genotype was identified 
as G/A-A/A compared to G/G, exhibiting a significant association 
(p-value=0.0063; OR=2.74; 95% CI: 1.28-5.88), as outlined in  
[Table/Fig-5].

Regarding SNP rs2275543, the log-additive model emerged as the 
best fit, characterised by the lowest AIC and BIC values. The risk 
allele for this model was determined to be C (OR=3.50; 95% CI: 
1.17-10.42; p-value=0.011), as depicted in [Table/Fig-6].

Finally, for SNP rs1497828, the risk genotype was identified as 
G/C-C/C in contrast to G/G, displaying a significant association 
(p-value=0.0011; OR=2.90; 95% CI: 1.51-5.57), as shown in [Table/
Fig-7]. These findings provide valuable insights into the genetic basis 
of IR, shedding light on the specific polymorphisms associated with 
increased susceptibility to this metabolic condition.

DISCUSSION
Understanding the genetic underpinnings of IR and its association 
with metabolic disorders is crucial for advancing our knowledge of 
disease mechanisms and developing targeted interventions. In this 
discussion, we delve into the genetic factors identified in present 
study-specifically, the roles of RNF138, ABCA1 and ESRRG-
GPATCH2 polymorphisms in influencing insulin sensitivity and 
glucose homeostasis. By elucidating the functional significance of 
these genetic variants and their implications for metabolic health, 
present study aim to contribute to a broader understanding of IR 
pathogenesis and its potential therapeutic interventions.

Genetic inheritance analysis involves assessing how genetic 
variants contribute to the inheritance patterns of certain traits or 
diseases within populations. Different genetic inheritance models 
are evaluated to understand the relationship between genotypes 
and phenotypes. These models include codominant, dominant, 
recessive, overdominant and log-additive models. The choice of 
the best-fit model is determined based on statistical criteria such 
as the Akaike Information Criterion (AIC) and Bayesian Information 
Criterion (BIC) values, with lower values indicating a better fit.

RNF138 belongs to the RING Finger (RNF) family and it is specifically 
classified within the UIM subfamily [24]. RING finger proteins 
contain the RING domain, which serves as an E3 ubiquitin ligase 
that is important for carrying out a highly specific post-translational 
modification known as ubiquitination [25]. E3 ubiquitin ligase is 
known to contribute to IR due to its proteolytic and degradation 
effects on the insulin receptor and insulin receptor substrates, as 
reported by Bai T et al., [26]. Yang XD et al., propose two methods 
by which E3 ubiquitin ligase affects IR and diabetes: one method 
involves the direct degradation of insulin receptor substrates, 
insulin receptors and other important insulin signalling molecules 
by E3 ubiquitin ligases via the ubiquitin-proteasome system; the 
second method involves E3 indirectly regulating insulin signalling 
through the modulation of pro-inflammatory mediators such as 
TNF-α [6].

The E3 ubiquitin ligase activity mediated by the RING domain is 
essential for the covalent attachment of ubiquitin to target proteins, 
directing them for proteasomal degradation. Dysregulation of RNF 
proteins, including RNF138, has been implicated in various diseases, 
highlighting their importance in maintaining cellular homeostasis. In 
the context of metabolic disorders, RNF proteins may influence key 
pathways related to insulin signalling, thus potentially contributing to 
the development of IR [27].

In a murine knockout model study by Bhagwandin C et al., it was 
concluded that MARCH1, which is a member of the RING finger 
family, exhibits a negative regulatory effect on insulin receptors 
through ubiquitination, which ultimately affects insulin sensitivity 
[25]. Hu X et al., found that RNF186 increased hepatic Triglyceride 
(TG) buildup, dysregulated insulin sensitivity and could increase 
hepatic inflammation when subjected to a high-fat diet, while 
Lee JH et al., discovered that RNF20 regulates liver TG synthesis 
[28,29]. According to research by Sarkar P and Thirumurugan K, 
RNF213 is linked to adipogenesis and insulin control, connecting 
TNF-mediated pathways to obesity [30]. Present research shows 
a strong correlation between IR and rs4799327 in the RNF138 
gene according to the dominant model of inheritance (OR=2.74; 
95% CI: 1.28-5.88; p-value=0.006).

The ATP-binding cassette transporter (ABCA1) is essential for 
the transfer of cellular cholesterol and phospholipids to lipid-poor 
apolipoproteins, forming precursor HDL particles and aiding in lipid 
metabolism. The expression of ABCA1 in adipose tissue and its 
relationship to IR in obesity have been studied [31]. Their findings 
showed that obese individuals had significantly reduced levels of 
ABCA1 expression in their visceral adipose tissue. Reduced ABCA1 
expression was observed in insulin-resistant individuals and this was 
independently linked to increased insulin sensitivity.

The study by Zaidi A et al., focuses on the expression analysis of the 
ABCA1 gene in type 2 diabetic patients in Pakistan, both with and 
without dyslipidaemia and its correlation with the glycaemic index 
and lipid profile. The researchers found that ABCA1 expression was 
significantly downregulated in patients with diabetic dyslipidaemia 
compared to those with diabetes alone and healthy controls. This 
downregulation was negatively correlated with fasting blood sugar 
and positively correlated with HbA1c and lipid profile in diabetic 
patients, suggesting that ABCA1 plays a critical role in managing 
cholesterol levels and glycaemic control in Type 2 Diabetes (T2D). 
The study emphasises the potential of ABCA1 as a therapeutic 
target for managing diabetic dyslipidaemia [32].

The review by Babashamsi MM et al., highlights the multifaceted role 
of ABCA1 in MetS, emphasising its involvement in HDL and VLDL 
production, insulin-glucose homeostasis, inflammation suppression 
and obesity regulation [33]. It elucidates how ABCA1 mediates key 
steps in HDL biogenesis, impacts VLDL production in the liver and 
influences insulin secretion and sensitivity in pancreatic β-cells, 
adipocytes and skeletal muscle cells. Furthermore, it underscores 
the association between abnormal ABCA1-regulated phenotypes 
and the development of MetS, offering insights into potential 
therapeutic strategies targeting ABCA1 to mitigate MetS-related 
complications.

Present study complements these findings by revealing a significant 
association between the SNP rs2275543 in the ABCA1 gene 
and IR. The identification of the risk allele C (OR=3.50; 95% CI: 
1.17-10.42; p-value=0.011) further accentuates ABCA1’s role in 
metabolic disorders, aligning with the review’s emphasis on ABCA1’s 
involvement in insulin-glucose homeostasis and underscoring 
its potential as a therapeutic target for addressing MetS-related 
complications.

de Haan W et al., examined how the absence of ABCA1 specifically 
in adipocytes affects lipid metabolism and glucose regulation using 
ABCA1-deficient mice [34]. Their research showed that without 
ABCA1, there was a buildup of cholesterol and TGs in adipose 
tissue, leading to larger fat deposits and increased body weight 
when fed a high-fat and high-cholesterol diet. Additionally, ABCA1-
deficient mice displayed impaired glucose tolerance, reduced 
sensitivity to insulin and lower insulin production. These results 
emphasise the importance of ABCA1 in controlling lipid levels and 
glucose metabolism, suggesting that it could be a promising target 
for treating metabolic disorders. Present study reveals a significant 
association between IR and the ABCA1 gene’s SNP rs2275543. 
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The risk allele C is linked to increased IR (OR=3.50; 95% CI: 
1.17-10.42; p-value=0.011), shedding light on its potential role in 
metabolic disorders such as T2DM.

The ESRRG is part of the orphan nuclear hormone receptor family, 
which includes steroid hormone receptors. It functions as a continuous 
transcription activator [35]. This group of receptors is involved 
in various regulatory functions, managing both homeostatic and 
metabolic activities [36]. ESRRG is implicated in the pathophysiology 
related to both the pancreas and the liver. In the pancreas, ESRRG 
regulates pancreatic β-cell function and insulin secretion, affecting 
glucose homeostasis. In the liver, ESRRG influences hepatic glucose 
production and lipid metabolism, contributing to insulin sensitivity and 
glucose utilisation. Dysregulation of ESRRG signalling pathways can 
disrupt insulin action and exacerbate IR, thereby playing a role in the 
development and progression of metabolic disorders like T2DM.

GPATCH2, which stands for G-Patch Domain Containing 2, is 
a gene that encodes a protein known to be involved in RNA 
processing, an essential step in the production of proteins from 
genes. While GPATCH2 is not directly implicated in the typical 
pathways associated with insulin signalling or glucose metabolism, 
its role in cellular processes may indirectly influence factors related 
to insulin resistance or the development of diabetes [37].

The association between the ESRRG rs1890552 A>G 
polymorphism and urine 8-epi-PGF2α levels was investigated 
in a study by Kim M et al., involving 1,933 Korean individuals 
to determine whether it was related to Impaired Fasting Glucose 
(IFG) or the onset of T2D [38]. The results showed that, relative 
to the control group, those with IFG or T2D had higher plasma 
Malondialdehyde (MDA), urinary 8-epi-PGF2α and brachial-ankle 
pulse wave velocity (baPWV). Furthermore, there was a significant 
increase in the frequency of the ESRRG rs1890552 GG genotype 
in individuals with T2D or IFG, suggesting that this genotype 
may contribute to an increased vulnerability to these metabolic 
disorders. Our study identified a significant association between 
SNP rs1497828 and T2D risk, with the G/C-C/C genotype 
showing a higher risk compared to G/G genotype carriers 
(p-value=0.0011; OR=2.90; 95% CI: 1.51-5.57). This emphasises 
the importance of genetic variations in predisposing individuals to 
T2D and the utility of genetic markers in identifying those at risk 
for metabolic disorders.

Present study identified genetic polymorphisms, specifically 
rs4799327, rs2275543 and rs1497828, associated with IR in 
individuals with a normal BMI in the Indian population, which has 
significant public health implications. This research highlights the 
potential of incorporating genetic screening into routine healthcare 
assessments to identify individuals at higher risk of IR and T2D, 
especially where traditional factors like BMI may not be reliable 
indicators. While genetic screening offers a promising solution for 
early detection, its widespread implementation could face challenges, 
such as costs and accessibility, particularly in low-resource settings.

Early identification of these genetic predispositions enables targeted 
interventions, such as personalised lifestyle modifications or clinical 
treatments, which could help delay or prevent the onset of IR and 
its progression to T2D. This approach holds promise for improving 
outcomes and reducing the burden of diabetes in high-risk 
populations. However, integrating genetic screening into standard 
healthcare would require careful consideration of ethical, logistical 
and societal factors to ensure equitable access and appropriate use 
of the information.

The rationale behind selecting RNF138, ABCA1 and ESRRG-
GPATCH2 lies in their well-established roles in metabolic pathways 
implicated in insulin sensitivity and glucose homeostasis, making 
them compelling genes for genetic studies focused on IR risk in 
the Indian population. Furthermore, understanding the genetic 
determinants of IR holds significant implications for public health 

interventions and personalised medicine approaches, paving the 
way for targeted therapeutic interventions aimed at mitigating the 
burden of diabetes in high-risk populations.

Limitation(s)
This study provides important preliminary insights into genetic 
markers associated with IR in the Indian population; however, it has 
some limitations. The small sample size and focus on a specific 
population may limit the generalisability of the findings. The case-
control design and reliance on self-reported data introduce potential 
biases and limit the ability to infer causality. Additionally, the study 
analysed only a limited number of SNPs and lacked detailed 
phenotypic data, such as lifestyle habits, physical activity levels 
and inflammatory markers, which would have provided a more 
comprehensive understanding of how these factors interact with 
genetic predispositions to influence IR. Despite these constraints, 
the findings offer a valuable foundation for future research, which 
should involve larger, more diverse populations and a broader range 
of genetic and phenotypic data to confirm and expand on these 
results. Moreover, while present study identifies significant genetic 
associations with IR, it does not include functional analyses to explore 
the underlying biological mechanisms. Future research should focus 
on in-depth functional studies to better understand how these 
genetic variations contribute to IR and metabolic disorders.

CONCLUSION(S)
In conclusion, present study indicates that RNF138, ABCA1 and 
ESRRG-GPATCH2 play significant roles in the genetic predisposition 
to IR within the Indian population. Through a meticulous examination 
of relevant SNPs and a comprehensive analysis of metabolic 
markers, present stidy identified notable associations between 
genetic variations and IR status. Specifically, the findings reveal 
compelling links between certain genotypes and an increased risk 
of IR, shedding light on the intricate genetic architecture underlying 
metabolic dysfunction. Moreover, present study underscores the 
importance of further research to validate and extend these findings 
in larger, prospective longitudinal cohorts. By deepening the 
understanding of the genetic determinants of IR, present study lays 
a crucial foundation for future investigations aimed at developing 
targeted interventions and personalised therapeutic approaches to 
mitigate the burden of diabetes and related metabolic disorders in 
high-risk populations.
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